
Refactoring Methods for Knowledge Bases

Joachim Baumeister, Frank Puppe, and Dietmar Seipel

Department of Computer Science
University of Würzburg, 97074 Würzburg, Germany
Phone: +49 931 888-6740, Fax: +49 931 888-6732

email: {baumeister, puppe, seipel}@informatik.uni-wuerzburg.de

Abstract. The manual development of large knowledge systems is a difficult and
error-prone task. In order to facilitate extensions to an existing knowledge base
the structural design of the implemented knowledge needs to be improved from
time to time. However, experts are often deterred even from important design
improvements since some restructurings are too complex to handle.
In this paper, we introduce a framework that allows for automated refactorings.
Refactoring methods are well-defined and are executed in a semi-automated way.
In this manner, the developer is supported during the process of restructuring of
even large knowledge bases. Refactoring methods are usually applied to improve
the design of the knowledge base; in this paper, we sketch some design anomalies
that identify poor design of the knowledge base.

1 Introduction

Although knowledge systems have been established in many domains over the last
years, the development and maintenance of such systems is still a costly and time-
consuming task. Large knowledge systems are commonly build in a manual way, i.e.,
domain specialists are modeling the knowledge bases by hand and formalize the knowl-
edge using specialized tools. Also the maintenance and extension of the knowledge
bases is usually done by the specialists themselves.

In the last years we have gained experience in projects with building large diagnos-
tic knowledge systems, mainly in the medical domain. For example, the HEPATOCON-
SULT system [4] is a publicly available consultation and documentation system for the
diagnosis of liver diseases. A subsystem of HEPATOCONSULT is the SONOCONSULT

system [10], which is in routine use in the DRK-hospital in Berlin/Köpenick, Germany.
The practical installation of further systems, such as the ECHODOC system [13] (for-
merly QUALI TEE), in a hospital environment is currently implemented.

An important aspect of knowledge system development is the continuous adapta-
tion and extension of already deployed knowledge bases. Often, these modifications
consider the improvement of the knowledge base design, i.e., the simplification and
generalization of certain aspects of the available knowledge. However, changing ex-
isting and often large knowledge bases is not a simple problem, since unstructured
modifications can cause unexpected deficiencies and errors.

baumeister
Textfeld
Engineering Knowledge in the Age of the Semantic Web: 14th International Conference, EKAW 2004, LNAI 3257, pp. 157-171, Springer Verlag , 2004

1.1 Refactoring, Restructuring and Refinement

We present refactoring methods for the save modification of diagnostic knowledge
bases. Such restructurings are initiated by the domain specialist in order to improve
the design of the knowledge base. The main focus of the presented approach is the
improvement of the knowledge base design. Since even simple changes of knowledge
objects can imply subsequent and complex adaptations of the remaining knowledge
base the domain specialist should be supported by specialized tools.

The introduction of such restructurings for a step-wise and algorithmic modification
of the knowledge base was inspired byrefactoring methodsintroduced for software en-
gineering [5,14]. Here, refactoring considers the improvement of existing software code
without changing the external behavior of the program. The implementation of refac-
torings is quite risky, especially for large systems. Therefore, refactoring methods are
strongly connected with appropriate test methods. However, when performing a refac-
toring method the accompanying tests (e.g., unit tests) need to be adapted, and this
is mostly done manually. In contrast to software engineering we can see that refac-
toring methods for knowledge bases often take advantage of the declarative nature of
knowledge and test knowledge, respectively. Thus, refactoring methods for knowledge
systems often can propagate their changes to the corresponding test knowledge, e.g., by
modifying the respective objects in test cases.

The work on refactoring methods for knowledge bases is related to the concept of
KA scriptsof Gil and Tallis [7]. KA scripts and refactoring methods are both designed
for supporting the knowledge engineer with complex changes of the knowledge. How-
ever, refactoring methods are focussing on improving the design of the knowledge base,
whereas KA scripts mainly try to assist the user during extensions of knowledge bases.
Thus, the application of refactoring methods is driven by detected design anomalies,
whereas KA scripts try to provide methods for preserving a usable state of the knowl-
edge after a manual modification of the knowledge base.

The refinement of the knowledge base performed by restructuring methods dif-
fers from refinement techniques, e.g., described by Boswell and Craw [3] or Knauf
et al. [12]. Thus, refactoring is usually not applied for improving the accuracy of the
system, but for improving the design of the knowledge base. Especially for this rea-
son a refactoring method is currently applied manually, while supported by automated
adaptations of attached knowledge. In ontological engineering [8] the problem of re-
structuring ontologies has been also recognized. For example, Góméz-Pérez and Rojas-
Amaya [9] describe an approach for reengineering ontologies for reuse that consists
of the three activitiesreverse engineering, restructuring, andforward engineering. Al-
though no procedural methods were given for implementing the restructuring activity
some typical concepts for refactoring the design of an ontology with a subsequent vali-
dation were discussed.

1.2 Basic Definitions

We consider the refactoring of diagnostic knowledge bases using instances of the do-
main ontology as given in the following.

Let ΩQ be the universe set of allquestionsavailable in the application domain. The
type of a questionq ∈ ΩQ depends on the domaindom(q), i.e. the range of values for
the answers to the questionq. The value range can define

– numerical values for reals or integers,
– symbolic values with either one-choice or multiple-choice answers, and
– arbitrary content for text answers.

The assignment of a valuev ∈ dom(q) to a questionq ∈ ΩQ is called afinding, and
we defineΩF to be the set of all possible findings in the given problem domain; a
finding f ∈ ΩF is denoted byq:v. Each findingf is defined as a possible input of
a diagnostic knowledge system. Questions concerning specific areas of the application
domain are grouped into question sets. Aquestion setQ contains a list of questions that
are semantically related, i.e.Q ⊆ ΩQ.

A diagnosisis representing a possible output of a diagnostic knowledge system.
We defineΩD to be the universe of all possible diagnoses for a given problem domain.
With respect to a given problem a diagnosisd ∈ ΩD is assigned to a symbolic state
dom(d) = {not probable, unclear , suggested , probable} .

A caseis defined as a tuplec = (Fc,Dc), whereFc ⊂ ΩF is a set of findings
given as input to the case. OftenFc is also called the set ofobserved findingsfor the
given case. The setDc ⊆ ΩD contains the diagnoses describing the solution of the case
c. The set of all possible cases for a given problem domain is denoted byΩC . We call a
collection of casesCB ⊆ ΩC acase base.

A rule r = cond(r) → action(r) consists of a rule conditioncond(r) containing
disjunctions, conjunctions, and/or negations of arbitrary findingsF ∈ ΩF or assigned
diagnosis states, and a rule actionaction(r), that is executed if the rule condition eval-
uates to true in a given case. The rule is called anabstraction rule, if the action assigns
a valuev ∈ dom(q) to a questionq ∈ ΩQ. Alternatively, an actiond:s of ascoring rule
can assign a certainty scores to a given diagnosisd ∈ ΩD. The dialog of the system,
i.e., presenting questions and question sets to the user, is controlled byindication rules;
such rules indicate a list of questions or a list of question sets in their rule action. We
defineΩR to be the universe of all possible rules for a given universe of diagnosesΩD
and a given universe of questionsΩQ; we callR ⊆ ΩR a rule base.

2 A Framework for Refactoring Methods

When a knowledge system is build in an evolutionary way the design of the knowledge
base needs to be improved by refactorings from time to time. The refactoring is moti-
vated by the fact that the knowledge base is extended incrementally and consequently
the knowledge design becomes messy. Furthermore, the use of the knowledge system
in a real life environment can reveal overdetailed or unused knowledge objects, such as
unneeded diagnoses or questions that are never answered. However, since the modifi-
cation of (large) knowledge bases can be a difficult and error-prone task it is suggestive
to propose structured approaches for such modifications.

It is worth mentioning, that refactoring methods differ from ordinary knowledge
modifications: Refactoring methods provide an exact procedure describing the partic-
ular modification of the knowledge base, and they include all possible consequences

for connected knowledge elements. For example, with the modification of a knowledge
object the required adaptations and possible conflicts for the implemented knowledge
are described. With the adaptation of such knowledge also the adjustment of the accom-
panying test knowledge is discussed.

Furthermore, refactoring methods differ from ordinary modifications with respect
to their tight connection with automated test methods. For an automated application of
tests the expected result of a test needs to be known beforehand. A commonly used au-
tomated test method isempirical testing, i.e., running a collection of previously solved
cases and comparing the stored solution with the result derived by the knowledge sys-
tem. There exist further tests that could be executed without any additional test knowl-
edge like cases, e.g., anomaly testing [15]. The general procedure for the application of
refactoring methods is as follows:
1. The actual refactoring is motivated by the detection of a design anomaly, or by a

complex extension of the knowledge base.
2. An appropriate refactoring method is selected for the task.
3. An automated test suite is used for inspecting the valid behavior of the knowledge

base. A refactoring cannot be applied, if the tests uncover an invalid behavior.
4. The refactoring method is performed with respect to the mechanics given in the

methods description.
5. After the successful application of the method the test suite is again used for validat-

ing the behavior of the knowledge base. The method can only applied successfully
if no errors have occurred.

In the context of this paper we consider rules and cases as possible representations
for diagnostic knowledge. It is worth noticing, that case-based knowledge is not only
suitable for diagnostic reasoning, but can be also used as test knowledge, e.g. by the
application of empirical testing. In the next section we sketch some situations that typ-
ically point to design anomalies in the knowledge base. Based on such anomalies the
knowledge base can be refactored in order to improve the design.

3 Design Anomalies in Knowledge Bases

With the manual construction of knowledge systems the design of the knowledge base
often becomes complex over the time. For example, the level of detail for some find-
ings turns out to be too specialized or findings/diagnoses are contained in the knowl-
edge base, but are actually not used. Since refactorings are applied in order to simplify
knowledge design it is important to discuss some typical examples of bad knowledge
design. Suchdesign anomaliesare related to the classical definition of anomalies, e.g.
described for rule bases by Preece and Shinghal [15]. Here, the knowledge base is
checked for containing redundant, ambivalent or circular rules. According to Preece
and Shinghal anomalies are not errors but are symptoms for probable errors in a knowl-
edge base. Analogously, Iglezakis et al. [11,18] introduced quality measures for the
detection of design anomalies for case-based knowledge. In the context of this paper
we focus on areas in the knowledge base that are mainly responsible for worsening
the knowledge design. The understandability and maintainability of the system can be
improved by modifying these areas, which we calldesign anomalies. In software engi-

neering research design anomalies are often identified asbad smellsin software code
as described by Fowler [5]; we have adapted the concept of bad smells to knowledge
design, and synonymously use the terms bad smell and design anomaly.

Although no exact metrics can be given for identifying such smells we want to
introduce some situations in which a bad smell is probable. We do not give an exhaustive
list of design anomalies but sketch some typical settings that aresmelly.

Lazy Knowledge Object.The use of the implemented knowledge objects like findings
and diagnoses is an important issue for the design of knowledge systems. If the finding
or diagnosis is never used or used very infrequently in the real life environment, then the
deletion of the object should be considered in order to simplify the knowledge design;
fewer objects included in the knowledge base improve its simplicity. In such a case the
methods REMOVEDIAGNOSIS and REMOVEQUESTION are appropriate refactorings.
However, such an anomaly should be considered very carefully: of course, detected di-
agnoses or questions that are used very infrequently but can be used functionally in the
problem domain, usually should not be removed from the knowledge base. Neverthe-
less, the detection of a lazy object can identify abandoned entities that have no more a
functional meaning in the present version of the system, and can be therefore deleted
without reducing the derivational power of the system.

Overdetailed Question.For a choice question the range of possible values may be too
detailed in the used application. For example, the developer of the system has defined
the five values in

dom(temperature) = {very low , low ,normal , high, very high}
for a questiontemperature. During the following development of the knowledge base it
turns out that a less detailed value range with only three possibilities is more suitable,
e.g.,low, normal, andhigh. In such cases, the method COARSENVALUERANGE can be
used. Alternatively, the level of detail can be reduced by converting a question with a
numerical domain into a choice question with a discrete and ordered value range; then,
the refactoring method TRANSFORMNUM INTOOC is appropriate.

Lengthy Dialog. If the end user has to enter the findings manually, then the dialog
efficiency of the knowledge system is an important issue to consider. Lengthy dialogs
with many unnecessary questions are often perceived to be annoying and can critically
affect the practical success of the implemented system. If the dialog turns out to be too
long and too verbose for the end users, then the method EXTRACTABSTRACTION can
be used to replace a list of original questions by a single, semantically equivalent and
abstracted question. Alternatively, the method EXTRACTQUESTIONSET can be used to
divide a large question set into a list of smaller questionnaires. Further modifications can
improve the dialog capabilities by omitting extracted question sets that are perceived to
be irrelevant.

Finding Clump. The rules defining the diagnostic knowledge for particular diagnoses
frequently contain the same collection of findings. The design of the rule base may
be simplified, if thisclump of findingsis substituted by a single finding representing
an abstraction of the jointly occurring findings, i.e., using the EXTRACTABSTRACTION

method. Then, complex rule conditions can be simplified by replacing the finding clump
with the abstraction finding. However, the finding clump is very difficult to eliminate
if the combined occurrence of the findings mean a disproportionate confirmation or
disconfirmation of a diagnosis. It is very difficult, to map such reenforcing observations
to a single abstraction, automatically.

Besides the bad smells mentioned above there exist various others mainly depend-
ing on the actual knowledge representation. For detecting some of the sketched design
anomalies we can provide simple tests, e.g., using a sufficiently large case base with
real life cases lazy objects can be easily identified by counting their occurrences in the
cases. A question can be assumed to be overdetailed, if there exist similar rules, i.e.,
rules with equivalent rule action that only differ in assigned question values contained
in the rule condition. In the following section we introduce the refactoring methods
COARSENVALUERANGE and EXTRACTQUESTIONSET in detail and briefly describe
other methods related to the described design anomalies.

4 A Catalog of Refactoring Methods

Refactoring methods are defined in a template-like from in order to allow for a con-
venient and simple application. Each refactoring method is described by the following
seven elements.

Name A short and meaningful name is chosen in order to simplify the
identification of the particular methods. The names are used to
build a vocabulary of refactoring methods.

Summary A description of the method summarizing the functionality of the
refactoring method.

Motivation A collection of situations in which this refactoring method should
be applied, e.g. referring to design anomalies.

Consequences A report of experienced conflicts and restrictions, when applying
this refactoring method. Additionally, hints are given as work-
arounds in the case of a conflict.

Mechanics A description of the actual refactoring method in an algorithmic
and step-wise style.

Example A simple example is given depicting the application of the refac-
toring method.

Related methodsAn enumeration of related (e.g. inverse) refactoring methods.

Using this framework we can define a catalog of refactoring methods describing
the particular modifications of a knowledge base in more detail. The developer can
decide about an appropriate refactoring by simply browsing the catalog and retrieving
the possible conflicts given in the consequences section.

The consequences of each refactoring strongly depends on the applied knowledge
representation. In the context of this paper we only consider rule-based and case-based
knowledge as possible representations; in [1] we also discussed the consequences for

further types of knowledge, e.g. causal set-covering models. In the following, we pro-
vide (shortened) catalog entries of the methods COARSENVALUERANGE and EXTRAC-
TQUESTIONSET.

COARSENVALUERANGE

Reduce the size of the value range of a choice question in order to scale down the
granularity – interactive tool support can be provided.

Motivation

Often domain experts start implementing the ontological knowledge with choice
questions providing detailed value ranges. During ongoing development the value
range of some questions turns out to be unnecessarily precise, e.g. an overdetailed
question. Furthermore, a smaller value range may simplify the dialog for the end-
users, e.g. a lengthy dialog.

Consequences

Let q ∈ ΩQ be the selected choice question with value rangedom(q). For the
execution of the method the developer has to specify a transformation function
t : dom(q) → dom ′(q), which maps the values of the original value range to the
values of the reduced value range.
Redundancies and conflicts can be caused due to the mapping to a smaller value
range. The applied knowledge, i.e. the rule baseR and case baseCB , is investi-
gated in oder to detect conflicts. The following conflicts can arise:

Rule-Based Knowledge
Creation of identical sub-conditions:
Due to the refactoring two rules with identical sub-conditions can be created.
Choice question,or condition

For choice questions the rule condition can contain anor condition of two
equivalent sub-conditions that were originally referring to different choice val-
ues and have been mapped to the same value. One of the two equivalent sub-
conditions can be deleted automatically in order to remove this redundancy.

Multiple-choice question,andcondition
If the refactored question is a multiple-choice question, then the rule condition
can contain anand condition of two equivalent sub-conditions targeting the
same transformed choice value. This redundancy can be automatically removed
by deleting one of the equivalent sub-conditions.

Creation of identical conditions:
The refactoring method modified two rules so that their conditions are equal. This
can cause ambivalent and redundant rules.

Redundant rules
If all rules with identical rule condition contain an equal rule action, then all
except one rule can be deleted automatically.

Ambivalent rules
The refactoring method can cause a conflict by creating ambivalent rules, i.e.,
rules with equal rule condition but different rule action.
Abstraction rules: A different value of the same question is derived by two

rules with the same condition. The rules are presented to the user in order
to resolve this conflict by manual adaptation.

Scoring rules: There exist two rules with identical rule condition, that derive
a (different) state for a single diagnosis. By default, the rules are replaced
with a newly created scoring rule with the same rule condition and a score
aggregated from the original scores. However, the aggregated rule is pre-
sented to the user for a subsequent adaptation.

Case-Based Knowledge
Similarity knowledge needs to be adapted according to the transformation function.
Refactored cases can cause redundant and ambivalent cases.
Identical cases

If two casesc, c′ ∈ CB have an identical set of findings and an equal set of
diagnoses, i.e.,Fc = Fc′ andDc = Dc′ , then by default the cases remain in the
case base, and the developer has to decide manually about a possible deletion.

Ambivalent cases
If two casesc, c′ ∈ CB have an identical set of findings but a different set
of diagnoses, i.e.,Fc = Fc′ andDc 6= Dc′ , then by default the cases remain
in the case base. However, for specialized case bases, e.g., defining test cases,
ambivalence denotes a semantic contradiction, and therefore this conflict can
require the method to be canceled.

Mechanics

The refactoring method is performed by the following procedure:
1. Apply the test suite to the knowledge system and abort, if errors are reported.
2. Select the choice questionq ∈ ΩQ for which the value rangedom(q) should

be reduced; define a new value rangedom ′(q) for q; |dom ′(q)| < |dom(q)|.
3. Define a transformation functiont : dom(q) → dom ′(q), which maps the orig-

inal valuesv ∈ dom(q) to the new valuesv′ ∈ dom ′(q). Usually,dom ′(q) ⊂
dom(q) andt(v) = v for all v ∈ dom ′(q).

4. Adapt the available test knowledge with respect to the new value rangedom ′(q),
e.g., modify test cases containing findingsq:v.

5. Modify the knowledge attached to questionq according to the transformation
function t. During the mapping of the values ofq check for conflicts as de-
scribed in theConsequencessection.

6. Apply the test suite to the refactored knowledge system and cancel the refac-
toring method, if errors are reported; alternatively start a debug session.

Example

The one-choice question "temperature" (temp) with the value range

dom(temp) = {very low , low ,normal , high, very high}

is too detailed and should be simplified by the value range

dom ′(temp) = {low ,normal , high} .

The developer defines a transformation functiont given by the following table:

dom(temp) dom ′(temp)
very low low
low low
normal normal
high high
very high high

Originally, the following rules connected with the questiontemp are contained in
the knowledge base (with diagnosis "infection" and question setQS):

r1 : temp:high ∨ temp:very high → infection:ssuggested

r2 : temp:high → indicate(QS)
r3 : temp:very high → indicate(QS)

After the application of the refactoring method we obtain the following rules:

r′
1 : temp:high ∨ temp:high → infection:ssuggested

r′
2 : temp:high → indicate(QS)

r′
3 : temp:high → indicate(QS)

The ruler′1 contains a redundant sub-condition and is further reduced. Since the
rule r′2 and r′3 are equal we also remove ruler′3. We obtain the following final
rules:

r′′
1 : temp:high → infection:ssuggested

r′′
2 : temp:high → indicate(QS)

Related Methods

n/a

EXTRACTQUESTIONSET

An existing question set is divided into two question sets by extracting a collection of
questions from the original question set into a newly created question set – automated
tool support can be provided.

Motivation

The number of questions contained in one question set may accumulate during the
continuous development of the ontological knowledge. In order to facilitate a more
compact and meaningful representation of the available questions large question
sets can be partitioned into smaller chunks containing semantically related ques-
tions. If thelengthy dialogsmell is detected, then this method is often applied as
a first step. In subsequent steps the rules indicating the extracted question sets are
modified in order to provide an optimized and reduced dialog.

Consequences

The behavior of the implemented dialog is affected, since extracted questions are
not indicated any more. LetQ = {q1, . . . , qn} be the original question set with
qi ∈ ΩQ, andQ ′ = {qk, . . . , qm} be the questions extracted fromQ , i.e.,Q ′ ⊆ Q .

Indication Rules
During the execution of the refactoring method we need to consider all indication
rules targeting the question setQ . All rules indicatingQ are modified so that they
are also indicating the extracted question setQ ′. Here, the order of indication is an
important aspect: If the first question of the extraction set is the first question of the
original question setQ , i.e.,qk = q1, then we indicateQ ′ beforeQ ; otherwise,Q
is indicated beforeQ ′. With this procedure the original indication sequence often
can be preserved.
If follow-up questionsq ∈ Q are extracted without their parent question, then
indication rules targetingq are modified so that they are indicating the extracted
question setQ ′.

Mechanics

The refactoring method is performed by the following procedure:
1. Apply the test suite to the knowledge system and abort, if errors are reported.

Especially, consider the test knowledge for the dialog behavior.
2. Select the question setQ and define the question setQ ′ = {qk, . . . , qm} with

qi ∈ Q to be extracted.
3. Create a new question setQ ′ at the position after the question setQ .

4. Move questions{qk, . . . , qm} to the question setQ ′.
5. Modify indication rules that target the original question setQ and follow-up

questions contained inQ (seeConsequencessection).
6. Apply the test suite to the refactored knowledge system and cancel the re-

structuring method, if errors are reported; alternatively start a debug session.
Especially, consider the test knowledge for the dialog behavior.

Example
The question set "lab tests" (labtest) with questions "red blood cell" (rbc), "white
blood cell" (wbc), "lt1", and "lt2" should be simplified;

labtest = { rbc,wbc, lt1 , lt2 } .

The questions "rbc" and "wbc" should be extracted to a new question set consid-
ering the blood parameters (bp). The following rule is contained in the knowledge
base

r1 = cond(r1) → indicate(labtest) .

With the transformation we obtain the question setslabtest = { lt1 , lt2 }and
bp = { rbc,wbc }, and the rule is modified as follows

r′1 = cond(r1) → indicate(bp, labtest) .

The generated question set is indicated before the original question set because the
first question of "labtest", i.e. the question "rbc", is extracted to "bp".

Related Methods
COMPOSEQUESTIONSETS (inverse).

Further Refactoring Methods

We briefly sketch the following refactoring methods REMOVEDIAGNOSIS, REMOVE-
QUESTION, TRANSFORMNUM INTOOC, and EXTRACTABSTRACTION.

REMOVEDIAGNOSIS and REMOVEQUESTION. These methods are executed if the
corresponding diagnosis or question was detected as a lazy object. However, simply
deleting the object can cause conflicts within the related knowledge. For example, if
the object is contained in a rule condition, then the developer has to decide (e.g., by
a default value) whether to delete the entire rule or only the affected sub-conditions.
Furthermore, the deletion of the objects can cause deficiencies, such as ambivalent or
redundant cases. Default settings can support the developer by removing deficient cases
automatically.

TRANSFORMNUM INTOOC. This refactoring method converts a numerical question
into an one-choice question, and is only applicable if the numerical value range can be
disjointly partitioned given the available knowledge for the numerical question. Oth-
erwise, the method is aborted. The generated partitions are mapped to choice values.
Consequently, the generated value range is an ordered sequence. Notice, that often a
post-processing of the generated partitions is reasonable, e.g., by defining a more coarse
value range. Rule conditions containing the numerical questions are mapped to a choice
value according to the disjunctive partition. Analogously, findings contained in cases are
mapped to a choice finding. With a given definition of the partition this method can be
fully automated.

EXTRACTABSTRACTION. A conjunctionF of findings can be aggregated into an ab-
stract findingf using the EXTRACTABSTRACTION refactoring method:

1. A new rule is created: the rule action isf , and the rule condition is given byF .
2. All rules usingF in their rule condition are modified such that the modified rule

condition containsf instead.

Case-based knowledge is not changed by the EXTRACTABSTRACTION method by de-
fault, i.e., the aggregated findings are not replaced with the abstract findingf . More
generally, we can introduce rules of the form

r = q1:X1 ∧ . . . ∧ qn:Xn → q:(X1, . . . , Xn),

where theXi are variable symbols which can be instantiated by valuesvi ∈ dom(qi),
for refactoring several rules at the same time. If a rule condition contains a conjunction
F = q1:v1 ∧ . . .∧ qn:vn which is an instance of the condition ofr, then we can replace
it by the corresponding instancef = q:(v1, . . . , vn) of the action ofr. Observe that the
domain of the new abstract questionq is the cross product of the domains of the original
questions:dom(q) = dom(q1)× . . .× dom(qn). In many cases a subsequent editing
of the modified rulesr and the abstract questionq by the user is necessary. E.g., using
COARSENVALUERANGE we can condense the cross product to a simpler domain.

5 Automated Refactorings with d3web.KnowME

The system d3web.KnowME is a highly integrated workbench for the development
of diagnostic knowledge systems. d3web.KnowME is the successor of the knowledge
acquisition tool of D3 [16], which has been successfully applied in many medical, tech-
nical, and other domains. The workbench offers visual editors for implementing vari-
ous types of knowledge, e.g., heuristic rules, case-based knowledge, and model-based
approaches. Furthermore, the development process is supported by an automated test
tool and a (preliminary) refactoring browser. The significance of combining refactor-
ing methods with automated tests during the development of knowledge systems was
discussed in [2]. The implementation of the test tool provides advanced methods for
the identification of bad smells, e.g. lazy knowledge objects or integrity tests for de-
tecting anomalies in knowledge. Furthermore, the correctness of the knowledge can be

validated by, e.g., empirical testing and unit cases. The refactoring browser is under
development, and currently only offers simple methods for the extraction/composition
of question sets and for the modification of the type of questions, e.g. transforming a
multiple-choice question into a set of semantically equivalent yes/no questions. A fur-
ther extension of the browser by more sophisticated methods, that consider an interac-
tive resolution of generated conflicts, is planned and will be available in the near future.
A recent version of the d3web system can be downloaded athttp://www.d3web.de .

6 Conclusion

We have introduced a structured approach for the automated modification of diagnostic
knowledge systems. Refactoring methods are very useful for changing the design of
(large) knowledge bases. When compared to refinement techniques the main goal of
the presented methods is not the improvement of the system’s accuracy, but the design
of the implemented knowledge. Such refactorings of the knowledge are commonly ini-
tiated by the developer and are motivated by design anomalies detected in the design
of the knowledge base. Furthermore, the knowledge is often restructured in order to
facilitate a simplified extension of the knowledge base in a subsequent step.

In large knowledge systems design changes are complex and error–prone. For this
reason, developers commonly avoid even important changes. We propose to use auto-
mated tools for these tasks but claim that structural approaches for the modification of
knowledge are a necessary requirement for the application of automated tools. Thus, a
method can be supported by interactive wizards that perform the implied adaptations.

The automatizationof the refactoring and consequent adaptations allows for the
accomplishment of even complex changes of a knowledge base, that were very difficult
to perform manually in the past. For example, the reduction of a symbolic value range
(performed by the method COARSENVALUERANGE) can imply the change of hundreds
of rules and thousands of test cases if applied to a real world knowledge base. Hence,
such modifications were not performed in the past, even if indicated by experience
gained by a real world application of the system.

Due to the limited space a comprehensive catalog of typical refactorings could not
be given in this paper; only two refactorings methods were described and some others
were sketched. In [1] more methods are introduced in detail and in conjunction with
the implications for rule-based, case-based, and set-covering knowledge. Furthermore,
appropriate test methods for the refactoring methods are discussed.

We have described refactoring methods that consider the modification of small spots
of the knowledge base. In the future we are planning to work on larger methods, i.e.,
big refactorings, that are applied in order to modify the entire design of the knowledge
base. A promising motivation for big refactorings is the integration ofknowledge for-
malization patterns. The idea of knowledge formalization patterns [17] is comparable
to design patterns [6] known from software engineering, by providing a guideline for
the developers on how to formalize and structure their knowledge. Appropriate refac-
toring methods can support the developer in modifying an existing knowledge base so
that it complies with the specification of a pattern.

http://www.d3web.de

Since the definition and implementation of new refactoring methods is a complex
task, we are developing methods for specifying refactorings in a declarative way. For
this purpose we use a semi-structured knowledge representation based on XML, and
we apply logic-based methods for managing and updating. The proposed approach was
already applied for querying and visualizing knowledge bases, and presented in [19].
Such visualization techniques are especially useful for the inspection of (parts of) the
knowledge base before starting a refactoring.

References

1. Joachim Baumeister.Agile Development of Diagnostic Knowledge Systems. PhD thesis,
University Würzburg, Germany, 2004.

2. Joachim Baumeister, Dietmar Seipel, and Frank Puppe. Using Automated Tests and Restruc-
turing Methods for an Agile Development of Diagnostic Knowledge Systems. InProceed-
ings of the 17th International Florida Artificial Intelligence Research Society Conference
(FLAIRS-2004). AAAI, 2004.

3. Robin Boswell and Susan Craw.Organizing Knowledge Refinement Operators, In: Valida-
tion and Verification of Knowledge Based Systems, pages 149–161. Kluwer, Oslo, Norway,
1999.

4. Hans-Peter Buscher, Ch. Engler, A. Führer, S. Kirschke, and Frank Puppe. HepatoConsult:
A Knowledge-Based Second Opinion and Documentation System.Artificial Intelligence in
Medicine, 24(3):205–216, 2002.

5. Martin Fowler.Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.
6. Erich Gamma, Richard Helm, Raplh Johnson, and John Vlissides.Design Patterns. Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.
7. Yolanda Gil and Marcelo Tallis. A Script-Based Approach to Modifying Knowledge Bases.

In Proceedings of the 14th National Conference on Artificial Intelligence and 9th Innovative
Applications of Artificial Intelligence Conference (AAAI/IAAI), pages 377–383. AAAI, 1997.

8. Asunción Gómez-Pérez, Mariano Fernándes-López, and Oscar Corcho.Ontological Engi-
neering. Springer Verlag, 2004.

9. Asunción Gómez-Pérez and Dolores Rojas-Amaya. Ontological Reengineering for Reuse.
In Proceedings of the 11th European Workshop on Knowledge Acquisition, Modeling and
Management (EKAW 1999), pages 139–156, 1999.

10. Matthias Hüttig, Georg Buscher, Thomas Menzel, Wolfgang Scheppach, Frank Puppe, and
Hans-Peter Buscher. A Diagnostic Expert System for Structured Reports, Quality Assess-
ment, and Training of Residents in Sonography.Medizinische Klinik, 3:117–22, 2004.

11. Ioannis Iglezakis and Thomas Reinartz. Relations between Customer Requirements, Perfor-
mance Measures, and General Case Properties for Case Base Maintenance. InProceedings of
the 6th European Conference on Case-Based Reasoning (ECCBR 2002), LNAI 2416, pages
159–173, Aberdeen, Scotland, 2002. Springer Verlag.

12. Rainer Knauf, Ilka Philippow, Avelino J. Gonzalez, Klaus P. Jantke, and Dirk Salecker. Sys-
tem Refinement in Practice – Using a Formal Method to Modify Real-Life Knowledge. In
Proceedings of 15th International Florida Artificial Intelligence Research Society Confer-
ence 2002 Society (FLAIRS-2002), pages 216–220, Pensacola, FL, USA, 2002.

13. Karl-Werner Lorenz, Joachim Baumeister, Christian Greim, Norbert Roewer, and Frank
Puppe. QualiTEE - An Intelligent Guidance and Diagnosis System for the Documentation of
Transesophageal Echocardiography Examinations. InProceedings of the 14th Annual Meet-
ing of the European Society for Computing and Technology in Anaesthesia and Intensive
Care (ESCTAIC), Berlin, Germany, 2003.

14. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois, Urbana-Champaign, IL, USA, 1992.

15. Alun Preece and Rajjan Shinghal. Foundation and Application of Knowledge Base Verifica-
tion. International Journal of Intelligent Systems, 9:683–702, 1994.

16. Frank Puppe. Knowledge Reuse among Diagnostic Problem-Solving Methods in the Shell-
Kit D3. International Journal of Human-Computer Studies, 49:627–649, 1998.

17. Frank Puppe. Knowledge Formalization Patterns. InProceedings of PKAW 2000, Sydney,
Australia, 2000.

18. Thomas Reinartz, Ioannis Iglezakis, and Thomas Roth-Berghofer. On Quality Measures
for Case Base Maintenance. InProceedings of the 5th European Workshop on Case-Based
Reasoning (EWCBR 2000), pages 247–259, 2000.

19. Dietmar Seipel, Joachim Baumeister, and Marbod Hopfner. Declaratively Querying and
Visualizing Knowledge Bases in XML. InProceedings of the 15th International Conference
on Applications of Declarative Programming and Knowledge Management (INAP 2004),
pages 140–151, 2004.

	Refactoring Methods for Knowledge Bases
	Joachim Baumeister, Frank Puppe, and Dietmar Seipel

