
Verification and Refactoring of Ontologies With Rules

Joachim Baumeister and Dietmar Seipel

Institute for Computer Science
University of Würzburg, Germany

email: {baumeister,seipel}@informatik.uni-wuerzburg.de

Abstract. Currently, the introduction of an appropriate rule representation layer
for the semantic web stack is discussed. However, with the inclusion of rule-based
knowledge new verification issues for rule-augmented ontologies arise.
In this paper we investigate the detection of anomalies as an important subtask
of verification. We extend and revise existing approaches for the syntactic verifi-
cation of ontologies with respect to the existence of rules, and we introduce new
anomalies considering the understandability and maintainability of such ontolo-
gies.

1 Introduction

The use of ontologies has shown its benefits in many applications of intelligent systems
in the last years. Whereas, the implementation of lower parts of the semantic web stack
has successfully led to standardizations, the upper parts, especially rules and the logic
framework, are still heavily discussed in the research community, e.g., see Horrocks et
al. [1].

It is well agreed that the combination of ontologies with rule-based knowledge is
essential for many interesting semantic web tasks, e.g., the realization of semantic web
agents and services. This insight has led to many proposals for rule languages com-
patible with the semantic web stack, e.g., the definition of SWRL (semantic web rule
language) originating from RuleML and similar approaches [2]. 1 SWRL allows for the
combination of a high-level abstract syntax for Horn-like rules with OWL [4], and a
model theoretic semantics is given for the combination of OWL with SWRL rules. An
XML syntax derived from RuleML allows for a syntactical compatibility with OWL.
However, with the increased expressiveness of such ontologies new demands for the
development and for maintenance guidelines arise. Thus, conventional approaches for
evaluating and maintaining ontologies need to be extended and revised in the light of
rules, and new measures need to be defined to cover the implied aspects of rules and
their combination with conceptual knowledge in the ontology.

In this paper, we revisit known approaches for the syntactic verification of ontolo-
gies and extend existing definitions with respect to rules if needed. Furthermore, we
define novel measures detecting parts of the ontology that may create problems for
the maintainability of the overall ontology. Such knowledge fragments are usually not

1 Currently, SWRL [3] has the status of a W3C member submission.

responsible for inconsistencies, but their elimination often can improve the understand-
ability and compactness of the ontology.

We focus on the basic features of SWRL and OWL, e.g., we omit a discussion of
SWRL built-ins. Due to the use of rules with OWL DL the detection of all anomalies
is an undecidable task, cf. [2]. Here, we only consider a subset of OWL DL, i.e., the
combined use of rules with subclass relations and some property characteristics like
transitivity, complement, and disjointness. In addition, we do not consider the evalua-
tion of an ontology with respect to the intended semantical meaning, which for example
is implemented by the OntoClean methodology [5] for taxonomic decisions made in an
ontology. We also do not consider common errors that can be implemented due to mis-
takes with the logical understanding of OWL descriptions, e.g., as described by Rector
et al. [6].

Here, the term verification denotes the syntactic analysis of ontologies for detecting
anomalies. On one hand, the discussed issues of the presented work originate from the
evaluation of taxonomic structures in ontologies introduced by Gómez-Pérez [7]. On the
other hand, in the context of rule ontologies classical work on the verification of rule-
based knowledge has to be reconsidered as done, e.g., by Preece and Shinghal [8,9].
However, the combination of taxonomic and other ontological knowledge with a rule
extension leads to new evaluation metrics that can cause redundant or even inconsistent
behavior. Here the concept of dependency graphs/relations from deductive databases
can be used [10]. For the sake of simplicity we will use the term ontology with the
meaning of ontology with rules in this paper.

property clump
over-specific property range
lonely disjoint class
chain of inheritance
lazy class/property

combined

missing literals
unused literals

rule-based

partition errors
concept classification

taxonomic

Deficiency
contradictory rule/
concept definition combined

ambiguous rule chains
self-reference

rule-based

semantic inconsistency
partition error

taxonomic

Inconsistency

circularity between
rules and taxonomy. combined

circular rule chains rule-based

circular subclasses taxonomic

Circulariy

redundancy in rule body
implication of properties
implication of super-classes

combined

subsuming rules
unusable rules
unsatisfiable rules
redundant literals

rule-based

identical structure
identical names

taxonomic

Redundancy

Anomaly

Fig. 1. A star of anomalies

We distinguish the following categories of anomalies: 1) Redundancy due to du-
plicate or subsuming knowledge in the ontology. 2) Circularity in taxonomies or rule
definitions. 3) Inconsistency because of contradicting definitions. 4) Deficiency as a
category comprising subtle issues affecting parts of an ontology with questionable de-
sign. Anomalies can occur for many reasons. For example, the integration of ontologies
can yield redundant knowledge, and the manual development and evolution of a (large)
ontology may introduce inconsistent definitions. Obviously, anomalies make the un-
derstandability, extensibility and evolution of ontologies more difficult. In Figure 1 the
discussed anomalies are depicted as a star.

The elimination of anomalies is done by refactoring. This term originates from
software engineering research [11,12], and it denotes the modification of source code
without changing the external behavior of the program. The modification only focuses
on the improvement of the code design rather than on its functionality. Analogously, the
refactoring of ontologies should target the improvement of the design of the ontology,
especially its understandability and maintainability.

The rest of the paper is organized as follows: Section 2 introduces the basic notions
that are necessary for the analysis of ontologies with rules. In Section 3 we present
measures to detect redundancy in ontologies, and in Section 4 variants of circularity are
given. Section 5 describes the identification of syntactic inconsistency, and Section 6
introduces typical examples for deficient parts of the ontology and appropriate refactor-
ing actions are sketched. Section 7 concludes the paper and gives directions for future
work.

2 Basic Notions and Scope

For the analysis of ontologies with rules we restrict the range of considered constructs
to a subset of OWL DL: we investigate the implications of rules that are mixed with
subClassOf relations and/or the property characteristics transitivity, complement, and
disjointness.

For the following it will be useful to extend the relations on classes and properties
to relations on class and property atoms. Given two atoms A,A′, we write �(A,A′), if
both atoms have the same argument tuple, and their predicate symbols are related by �,
i.e., if A and A′ both are

– class atoms, such that A = C(x), A′ = C ′(x), and �(C,C ′), or
– property atoms, such that A = P (x, y), A′ = P ′(x, y), and �(P, P ′).

For example, the relation � can be is-a , disjoint, complementOf, etc. Note, that from
a relationship �(A,A′) it follows that A and A′ are of the same type.

The detection of anomalies has been implemented in SWI–PROLOG. Due to their
compactness and formal manner we give the corresponding PROLOG definitions for the
discussed anomalies. Rules β ⇒ A are represented as A-Body, where Body is the list
of body atoms (representing the conjunction β) and A is the head atom. Since SWRL
rules with conjunctive rule heads can be split into several rules, we can (without loss of
generality) assume rule heads to be atomic.

2.1 Classes and Properties

Given a class C and a property P . When used in rules we call C(x) a class atom and
P (x, y) a property atom. Variables such as X , X ′, or Xi can denote both classes and
properties, and A, A′, or Ai can denote both class atoms and property atoms.

element(A) :-
(class(A)
; property(A)).

In PROLOG, disjunction (or) is denoted by ”;”. Classes and properties are taxonomi-
cally related by is-a relations. In OWL such is-a relations are defined by subClassOf
constructs. We denote a relation A is-a A’ by isa(A, A’), where A,A′ are either
classes or properties.

2.2 Complements and Disjointness of Classes

For classes there exists the construct complementOf to point to instances that do not
belong to a specified class. The complement relation between a class C1 and a class C2
is denoted by complementOf(C1,C2) in PROLOG.

In OWL the disjointness between two classes is defined by the disjointWith con-
structor; with disjoint(C1,C2) we denote the disjointness between two classes
C1 and C2. A set C = {C1, . . . ,Cn } of mutually disjoint classes defines a disjoint
partition; in PROLOG we denote this by disjointP([C1,...,Cn]).

We call two classes C1 and C2 incompatible, if there exists a disjoint or (even) a
complement relation between them.

incompatible(C1,C2) :-
(complementOf(C1,C2)
; disjoint(C1,C2)).

2.3 Taxonomic Relations and Rules

Obviously, relations B is-a A – where A and B are both class atoms or both property
atoms with the same arguments – are equivalent to rules of the form B⇒A with a single
atom B in the body, and we can combine the two into a single formalism B → A. We
denote the transitive closure of → by →∗. In PROLOG, B → A can be described as
follows:

derives(B, A) :-
(isa(B, A)
; rule(A-[B])).

In the following we will need implementations of the transitive closure of various pred-
icates <P>, which all look like follows:

tc_<P>(A, C) :-
(<P>(A, C)
; <P>(A, B), tc_<P>(B, C)).

I.e., for every predicate <P> for which we need the transitive closure we have a rule
of the form above.2 We will use the generic transitive closure for the predicate isa,
where tc isa(A, A) expresses that A is envolved in a cycle of the taxonomy (the
is-a relation), and for the predicate derives.

3 Redundancy

Parts of the ontology are redundant due to duplicate definitions or subsuming defini-
tions. Moreover, there could be redundant atoms in rule bodies, and the consequent of
a rule could be unsatisfiable.

3.1 Identity

We call identical formal definitions of classes, properties or rules, that can be only
discriminated by their different names, identity errors. They can occur if some implied
knowledge is not explicitly stated in the ontology, thus uncovering an incompleteness
error. For example, identically defined classes may be distinguished by the developer by
the introduction of an additional property for one of the identical classes. Also identity
of classes or rules can be created by the integration of overlapping ontologies that share
(partially) identical concepts.

3.2 Redundancy by Subsumption between Rules

The redundant definition of taxonomic knowledge of classes and properties was already
described by Gómez-Pérez [7]. Let X, Y be either two classes or two properties, such
that X is-a Y is stated in the taxonomy. Then we distinguish direct repetition, where
X is-a Y is stated more than once, and indirect repetition, where X is-a Y is stated and
can at the same time also be derived by a chain X is-a X1 is-a . . . is-a Xn is-a Y with
n ≥ 1. Direct and indirect repetition corresponding to the instantiation of classes and
properties can be also defined on instance-of instead of is-a .

The redundancy of rule-based knowledge (in extended Horn clause representation)
was considered for example by Preece and Shinghal [8]. A rule r is redundant with
respect to the rule base, if for every environment (set of base facts) the exclusion of
r would derive the same conclusions. In the following we define rule subsumption in
general as well as two typical special cases.

2 Note that a generic implementation of the transitive closure as a predicate tc(<P>, A, C)
would of course be possible, but it would be less efficient, since the atoms <P>(A, C) and
<P>(A, B) would have to be built repeatedly at run time.

Rule Subsumption. A rule r = β ⇒ A subsumes another rule r′ = β′ ⇒ A’, if β
subsumes β′ and A subsumes A′. Then r fires more often than r′ and derives more
general consequences. This happens, e.g., if A = A′ and β′ is a specialization of β.

anomaly(rule_subsumption, A1-Body1, A2-Body2) :-
subsumes(Body1, Body2),
subsumes([A1], [A2]).

This rule tries to instantiate A1-Body1 and A2-Body2 to A1’-Body1’ and A2’-Body2’,
respectively, such that A1’ subsumes A2’ and Body1’ subsumes Body2’. The instantia-
tions generated in the call subsumes(Body1, Body2) are used in the subsequent
call subsumes([A1], [A2]). There are two alternative implementations for the
predicate subsumes/2 depending on whether the first rule subsumes an instance of
the second rule (partial subsumption), or it totally subsumes the second rule.

– The call subset non ground(As1, As2) in the first variant tries to instanti-
ate As1 and As2 to As1’ and As2’, respectively, such that As1’ is a subset of As2’.
In that case As1 partially subsumes As2.

subsumes(As1, As2) :-
subset_non_ground(As1, As2).

– In the second variant, before the call subset non ground(As1, As2) a copy
As of As2 is made, which is afterwards compared to the new value of As2. If both
are variants of each other, then As1 totally subsumes As2.

subsumes(As1, As2) :-
copy_term(As2, As),
subset_non_ground(As1, As2),
variant(As2, As).

Implication of Superclasses. If A,Ai are either class or property atoms, then a rule
A1 ∧ · · · ∧An ⇒ A, such that Ai →∗ A for some Ai, is redundant.

anomaly(implication_of_superclasses, A-Body) :-
member(Ai, Body), tc_derives(Ai, A).

Here classes are only subsuming under certain conditions that are given in the rule
condition, i.e., an incorrect assignment of the subclass relation may exist.

If Ai ≡ A, then the equivalence may be incorrectly assigned, since the rule condi-
tion denotes a restriction on the implication.

This can be seen as a special case of rule subsumption, since the fact Ai →∗ A can
be seen as a rule Ai ⇒ A, which subsumes the first rule given above.

Redundant Implication of Transitivity. If P is a transitive property, then a rule P (x, y)∧
P (y, z) ∧ β ⇒ P (x, z) embodies a redundant definition of P , which can be already
derived by the OWL reasoner from the fact that P is transitive. Often such a redundancy
can be explained by an erroneous assumption of the transitivity during an ontology
integration process, since the rule defines a more restrictive condition of transitivity, if
the conjunction β is non-empty.

anomaly(redundant_transitivity, P_xz-Body) :-
P_xz =.. [P, X, Z],
P_xy =.. [P, X, Y], P_yz =.. [P, Y, Z],
subset_non_ground([P_xy, P_yz], Body).

This is a also special case of rule subsumption, since the transitivity of a property P
can be expressed as a rule P (x, y) ∧ P (y, z) ⇒ P (x, z), which subsumes the first rule
given above.

3.3 Redundancy in the Antecedent of a Rule

For a rule A1 ∧ · · · ∧ An ⇒ A we have Ai →∗ Aj for two atoms in its antecedent. In
this case the atom Aj is redundant and can be removed from the rule antecedent.

anomaly(redundancy_in_antecedent, A-Body) :-
tc_derives(Ai, Aj),
member(Ai, Body), member(Aj, Body).

As a special case, this form of redundancy can occur if Ai ≡ Aj in the ontology. This
anomaly may alternatively point to an incorrect mapping between the elements Ai and
Aj .

3.4 Unsatisfiable Rule Condition

A rule has an unsatisfiable condition, if at least one literal neither unifies with an input
literal (e.g., a given instantiation of the ontological concepts) nor with the consequent
of another rule.

anomaly(unsatisfiable_condition, _-Body) :-
member(A, Body),
\+ fact(A),
\+ rule(A-_).

With the rich semantics of OWL an unsatisfiable condition can also occur due to the
contradictory use of complementOf or disjointWith descriptions.

anomaly(unsatisfiable_condition, _-Body) :-
member(A, Body), member(B, Body),
incompatible(A, B).

4 Circularity

Circular definitions in the ontology have a severe impact on the reasoning capabilities
of the underlying knowledge. Here we distinguish circular definitions in the taxonomic
structure of the ontology as described by [7], circular dependencies in the rule base
as considered, e.g., by [8], but also circular dependencies that can occur due to the
intermixture between taxonomic and rule-based knowledge.

Circularity in Taxonomy. There is a cyclic chain X1 is-a X2 is-a . . . is-a Xn, such that
X1 = Xn, where all Xi are classes or all Xi are properties.

anomaly(circularity_in_taxonomy, A) :-
tc_isa(A, A).

Circularity between Rules and Taxonomy. There exists a rule A1 ∧ · · · ∧An ⇒ A, such
that for some atom Ai from the antecedent it holds A →∗ Ai.

anomaly(circularity_in_rules_and_taxonomy, A-Body) :-
member(Ai, Body), tc_derives(A, Ai).

The specified rule should be considered as a restricted is-a relation between A and Ai,
which may result in the detection of a misapplied taxonomic definition between the two
concepts. This error is similar to implication of subclasses, but with an inverse is-a
relation.

5 Inconsistency

Ambivalent definitions of ontological knowledge often cause unintended reasoning be-
havior. Besides partition errors concerning the taxonomic structure of the ontology,
cf. [7], also ambivalent definitions within the rule base may occur, cf. [8]. However,
due to the mixture of basic ontological knowledge and rules other ambivalence can be
identified.

Partition Error in Taxonomy. Consider a disjoint partition of a class C into subclasses
C1, . . . , Cn. On the class level, there is a partition error, if a class C ′ is a subclass of (at
least) two disjoint subclasses Ci, Cj of C. On the instance level, a partition error, where
some element e is an instance of (at least) two disjoint subclasses Ci, Cj of C, would
lead to an inconsistency. The following rule defines a partition error on the class level:

anomaly(partition_error, A-[B, C]) :-
disjoint(B, C),
isa(A, B), isa(A, C).

Self–Contradicting Rule. For a rule A1∧· · ·∧An ⇒A there exists a complementOf or a
disjointWith relationship between A and one of its body atoms Ai. Note that, according
to our definitions in Section 2, this means that A = C(x) and Ai = Ci(x) are class
atoms with the same argument x, and that C and Ci are disjoint or complements.

anomaly(contradicting_rule_consequent, A-Body) :-
member(B, Body), incompatible(A, B).

If such a rule would fire, then the derived conclusion A of the rule would contradict the
assumption Ai in its antecedent.

Contradicting Rules. We say that a rule r = β ⇒ A contradicts another rule r′ =
β′ ⇒ A’, if β subsumes β′, but A and A′ are contradicting. If r′ would fire, then also the
stronger r would fire and the derived conclusions A′ and A would be contradicting. The
subsumption β subsumes β′ can be defined by equivalentClass/Property relations as
well as is-a relations. The consequents A = C(x) and A′ = C ′(x′) are contradicting,
if the corresponding classes C and C ′ are disjoint or complements.

anomaly(ambivalent_rule_pair, A1-Body1, A2-Body2) :-
incompatible(A1, A2),
subsumes(Body1, Body2).

An even more general form of the anomaly is given, if there are two sets of rules (not
necessarily disjoint) that are deriving two semantically contradicting conclusions.

6 Deficiency

Deficiency is a subtle category comprising anomalies in an ontology that neither can be
identified as redundant nor define inconsistent knowledge. Such anomalies can originate
from the manual development of (large) ontologies, the evolution of ontologies, or as
a side-effect of the integration of ontologies. Deficiency is usually not responsible for
reasoning errors but affects the completeness, understandability or maintainability of
the underlying knowledge.

Originally, such design anomalies had been identified and investigated for relational
databases. In the last years, software engineering research has coined the term bad
smells for parts of the source code that do not produce false behavior but are badly de-
signed and should be improved for better maintainability, cf. [11]. Recently, a first step
was taken to transfer this idea to the conceptual properties of rule-based knowledge [13]
and OWL ontologies [14], respectively.

The identification of a bad smell is the starting point of a refactoring. Refactor-
ing methods describe precise procedures to eliminate the corresponding smell without
changing the meaning of the remaining knowledge. The following measures can be only
seen as indicators for the occurrence of an anomaly. In any case the user has to decide
whether and how to remove the possible anomaly. Then, refactoring methods provide

constructive procedures that restructure the ontology and rule base by eliminating the
anomaly.

In the following we present heuristics for the identification of some design anoma-
lies, and we sketch the use of appropriate refactoring methods.

6.1 Lazy Class/Property

An element (class or a property) in the ontology that is actually never used in the real-
world application is called lazy. The following facts indicate that an element could be
lazy:

– the element represents a leaf in the hierarchy,
– no rules use this element,
– there exist no instances of the element.

Laziness can occur due to many reasons: The merge or the integration of two ontologies
may include terms that are not useful or relevant in the actual domain. In addition, an
element can evolve to be lazy if it was specialized or generalized to elements more ap-
propriate to the application domain; consequently, the element was kept in the ontology
although it is not used anymore. In PROLOG, a possibly lazy element A can be detected
as follows:

anomaly(lazy_element, A) :-
element(A),
\+ isa(_, A),
\+ in_rule(A),
\+ instance(_, A).

in_rule(A) :-
rule(H-Body),
(A = H
; member(A, Body)).

The constraints stated above can be relaxed by tolerating very few rules with the con-
sidered object in their head or body. Then, these rules have to be inspected by the user
and marked as not usable any more. Removing the unused element with the refactoring
delete element should be considered with reasonable care:
1. The hierarchy has to be reconnected, i.e., every child of the term has to be linked

as a child to every parent of the element.
2. The attributions of the term have to be reattached to its children, e.g., transitivity

for a lazy property.
3. The corresponding rules have to be edited, i.e., every rule that contains the element

either in its antecedent or in its consequent has to be reconsidered: rules with the
element in their consequent should be removed from the ontology. Rules with the
element in their antecedent are either removed (default for rules with the element
as the only literal in the antecedent) or changed (remove literal with the element
from the antecedent). For the latter we have to consider the creation of anomalies,

such as the creation of redundant or ambivalent rules. In any case, changed rules
should be presented to the developer for a manual revision.

6.2 Chains of Inheritance

The backbone of an ontology is described by classes with corresponding taxonomic
relations, i.e., classes are hierarchically connected by is-a relations. If ontologies are
manually build in a distributed environment or are developed by the integration using
parts of other ontologies, then the indented subclass structure can degenerate to is-a
cascades in some areas of the taxonomy.

A taxonomic chain
C1 is-a C2 is-a . . . is-a Cn ,

of classes Ci, such that all intermediate concepts C2, . . . , Cn−1 are contained in no
other is-a relations except the ones in the chain is called a chain of inheritance. The
following observations for these intermediate classes Ci can be used as a heuristic to
strengthen the suspicion that a chain is anomalous:

– there exist no or very few instances for the Ci,
– the Ci are not extensively used in rules or other ontological definitions, e.g., prop-

erty restrictions
In any case the user has to decide if the chain should be eliminated by the refactoring

collapse hierarchy. Then, the chain is reduced to

C1 is-a Cn ,

and the intermediate concepts Ci (2 ≤ i ≤ n − 1) are subsequently removed from the
ontology as follows:
1. All properties where Ci occurs as the domain, as the range, or in a restriction have

to be modified. In many cases the occurrence of Ci can be changed to the upper
class C1. But in some cases these properties may appear to be redundant or useless,
then the property should be considered to be removed as well.

2. All rules containing Ci have to be modified. If there exist many rules containing Ci

in the antecedent or consequent, then the refactoring may not be practical. However,
a reasonable heuristic may be to change the occurrences of Ci to C1, if 2 ≤ i ≤
n/2, or to Cn, if n/2 < i ≤ n− 1, i.e., to change the class to the nearest remaining
neighbor.

3. For all instances of Ci – similar to the handling of rules – the user has to decide if
the existing instances should be translated to instances of C1 or Cn.

Finally, a new subclass relation C1 is-a Cn, which replaces chain, is created, and the
classes C2, . . . , Cn−1 are removed from the ontology.

6.3 Lonely Disjoint Class

The anomaly lonely disjoint class can occur as a result of an ontology integration task.
A lonely disjoint class is a concept that is not disjoint with any of its siblings, but has

disjoint relations to a collection of classes that are mutual siblings in another branch of
the taxonomy.

anomaly(lonely_disjoint, C) :-
siblings(Cs),
disjointP([C|Cs]),
\+ (sibling(C, M), disjoint(C, M)).

Besides an integration task such a lonely disjoint class can also occur due to the man-
ual modification of the ontology, i.e., moving a class into another branch without the
subsequent adaptation of the disjoint relations.

If the user has classified the disjoint relation as an actual error, then the elimination
of this anomaly is quite simple: the disjoint property can be removed from the lonely
disjoint class. However, its existence can cause unindented reasoning behavior.

6.4 Over-Specific Property Range

Developers tend to be very specific when manually defining value ranges for the partic-
ular properties. For example, the value range of a property temperature may be

Rtemperature = { very high, high, normal, low, very low }.

During the practical use of the ontology it might turn out that the values are too specific
and that the coarser value range R′

temperature = { high, normal, low } would work much
better. If rules are defined containing this property, then the anomaly can be identified
by the existence of many analogous rules for the particular values. In our example,
rules for the values high and very high could be present. In such cases, the refactoring
coarsen value range forms groups of equivalent values, e.g., high’ = { high, very high }
and low’ = { low, very low }.

The following rule determines pairs of rules having variants has value(P, Vi), i=1,2,
of property values in their antecedent (after deleting these variant atoms their bodies are
identical):

anomaly(over_specific,
R1, R2, has_value(P, [V1, V2])) :-

rule(R1), rule(R2),
R1 = A1-Body1, R2 = A2-Body2, R1 \= R2,
delete(has_value(P, V1), Body1, B1),
delete(has_value(P, V2), Body2, B2),
A1-B1 = A2-B2.

An analogous rule can be stated for rule consequents. The refactoring also replaces the
original values with the aggregated ones in the corresponding rules, which is illustrated
by the following example.

For the automatic refactoring of the corresponding rules the developer needs to
define a mapping M : Rtemperature 7→ R′

temperature from the original range to the coarsened

range, e.g.:

v very high high normal low very low
M(v) high high normal low low

Every rule containing the property temperature is refactored by the application of the
mapping function. Every atom in the head or body with has value(temperature, v) is
replaced by another atom has value(temperature, v’), where v’ = M(v). Analogously,
we have to replace all values in OWL constructs where values are explicitly used, e.g.,
in hasValue property restrictions.

With the application of the refactoring coarsen range redundant rules may be pro-
duced. In the case of a semantically inconsistent mapping function map even inconsis-
tent rules can occur. In consequence, the existence of such anomalies has to be checked
in a subsequent step.

6.5 Property Clump

The manual and distributed development of a larger ontology or the integration of ex-
isting ontologies can produce unintentionally repeated definitions in different classes of
the ontology.

A property clump is a set C of classes having a relatively large set P of properties in
common. These properties include the instantiation of DataType properties and Object
properties.

For refactoring, the repeated use of the property clump P can be caught by a new
class CP , which gets the properties in P . The original classes C ∈ C are linked to
CP instead of linking them to the properties in P . For ontologies with rules, we have
to change all rules having property atoms P (x, y) for P ∈ P in their antecedent or
consequent.

The use of such an abstract property class CP may increase the compactness and the
maintainability (with respect to chances, extensions, fixes) of the ontology. A property
clump in ontologies is comparable to the repeated use of code fragments in traditional
software, so-called clones. The extraction of such repetitions into a single method or
data structure is a common refactoring, which improves the compactness and maintain-
ability of the code. The procedure of the corresponding refactoring extract concept is
sketched for ontologies by the following example.

Example (Extract Concept for Property Clump)
The repeated definition of the String DataType properties

P = { hasAddress, hasPhone, hasEmail }

having the classes C = { person, company } as domain can be aggregated to a new con-
cept CP = addressInfo. If the user decides that the aggregation of these properties is a
meaningful self-contained concept, then the refactoring extract concept can automati-
cally perform the following steps:

1. Create a new class CP = addressInfo and add the class addressInfo as a new
possible domain for all identified properties in P .

2. Create a new object property hasAddressInfo connecting the classes C ∈ C with
the new class addressInfo, where range(hasAddressInfo) = {addressInfo} and

domain(hasAddressInfo) =
⋃

P∈P
domain(P).

3. Create and redirect instances: For each instance of a class in C, create an appro-
priate instances of class addressInfo and property hasAddressInfo and redirect the
original properties in P with respect to the newly created property hasAddressInfo
and class addressInfo.

4. Change rules having properties P ∈ P in their antecedent. E.g., for the property
hasAddress(X,Y) a new rule is created

hasAddressInfo(C,C ′) ∧ hasAddress(C ′, A) ⇒ hasReAddress(C,A) (1)

and every original rule, e.g.,

hasAddress(C,A) ∧ hasLoc(A,L) ⇒ hasAdrLoc(C,L) (2)

is changed to

hasReAddress(C,A) ∧ hasLoc(A,L) ⇒ hasAdrLoc(C,L) (3)

We see that for each property P ∈ P a new rule (1) is created, and the property P
of the original rule (2) is replaced by the newly created property which was defined
in rule (1), see adapted rule (3). This is reasonable if the property is used in many
rules and these rules should be kept as compact as possible. Otherwise, we would
encode the redirection in the original rules, i.e., instead of rule (1) and rule (3) we
simple would modify rule (2) by exchanging the atom hasAddress(C,A) in the
antecedent by the conjunction

hasAddressInfo(C,C ′) ∧ hasAddress(C ′, A),

which enlarges the antecedent by one literal.
5. Change rules having properties P ∈ P in the consequent. For example, the rule

hasLoc(C,L) ∧ hasAdrLoc(L,A) ⇒ hasAddress(C,A) (4)

with hasAddress(C, A) in the consequent is replaced by the rule

hasLoc(C,L) ∧ hasAdrLoc(L,A)∧hasAddressInfo(C ,C ′)
⇒ hasAddress(C ′, A)

(5)

7 Conclusions and Future Work

The implementation of the semantic web stack currently focuses on the integration of
rules into the web ontology language OWL. At the moment, SWRL, the semantic web

rule language, is a proposal for such an integration, and it has the status of a W3C mem-
ber submission. With the use of rule-based knowledge in combination with taxonomic
definitions of the ontology, new evaluation questions arise. In consequence, evaluation
measures have to be revisited and extended in order to include rules.

In this paper, we have presented a revised approach for the verification of rule aug-
mented ontologies which also includes extended measures for the verification of on-
tologies with respect to more subtle anomalies concerning the understandability and
maintainability. With the description of the anomalies we also sketched appropriate
refactoring methods for eliminating the detected problems.

In general, the work is not limited to the expressiveness of the SWRL ontologies,
but it can be also applied to similar rule extensions of ontologies. However, the pre-
sented approach is only a starting point for an extensive framework for the verification
and refactoring of ontologies. Here, only parts of the expressiveness of OWL DL were
considered; e.g., the implications of possibly existing property restrictions (universal
and existential quantification, cardinalities) are not investigated in the presented work.
Besides the consideration of the full expressiveness of OWL DL and of SWRL and its
extensions, e.g., to first-order logic by SWRL FOL [15], we also need to consider the
availability of non-monotonicity, which is expected to play an important role in real life
ontologies and knowledge bases. Here, some work has been done on the verification
of non-monotonic rule bases [16], that should be also integrated in a more elaborated
framework.

References

1. Horrocks, I., Parsia, B., Patel-Schneider, P., Hendler, J.: Semantic Web Architecture: Stack
or Two Towers? In Fages, F., Soliman, S., eds.: Principles and Practice of Semantic Web
Reasoning (PPSWR). Number 3703 in LNCS, SV (2005) 37–41

2. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL Rules: A Proposal and
Prototype Implementation. Journal of Web Semantics 3(1) (2005) 23–40

3. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language - Combining OWL and RuleML, W3C Member Submission .
http://www.w3.org/Submission/SWRL/ (May 2004)

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference – W3C Recommen-
dation. http://www.w3.org/TR/owl-ref/ (Feb. 2004)

5. Guarino, N., Welty, C.: Evaluating Ontological Decisions with OntoClean. Communications
of the ACM 45(2) (2002)

6. Rector, A.L., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang,
H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors
& Common Patterns. In: Engineering Knowledge in the Age of the Semantic Web: 14th
International Conference, EKAW, LNAI 3257, Springer (2004) 157–171

7. Gómez-Pérez, A.: Evaluation of Ontologies. International Journal of Intelligent Systems
16(3) (2001) 391–409

8. Preece, A., Shinghal, R.: Foundation and Application of Knowledge Base Verification. In-
ternational Journal of Intelligent Systems 9 (1994) 683–702

9. Preece, A., Shinghal, R., Batarekh, A.: Verifying Expert Systems. A Logical Framework and
a Practical Tool. Expert Systems with Applications 5(3/4) (1992) 421–436

http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/owl-ref/

10. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Berlin (1990)
11. Fowler, M.: Refactoring. Improving the Design of Existing Code. Addison-Wesley (1999)
12. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois,

Urbana-Champaign, IL, USA (1992)
13. Baumeister, J., Seipel, D., Puppe, F.: Refactoring Methods for Knowledge Bases. In: Engi-

neering Knowledge in the Age of the Semantic Web: 14th International Conference, EKAW,
LNAI 3257, Springer (2004) 157–171

14. Baumeister, J., Seipel, D.: Smelly Owls – Design Anomalies in Ontologies. In: Proc. of the
18th International Florida Artificial Intelligence Research Society Conference (FLAIRS),
AAAI Press (2005) 215–220

15. Patel-Schneider, P.F.: A Proposal for a SWRL Extension to First-Order Logic. http:
//www.daml.org/2004/11/fol/proposal (Nov. 2004)

16. Zlatareva, N.: Testing the Integrity of Non-Monotonic Knowledge Bases Containing Semi-
Normal Defaults. In: Proc. of the 17th International Florida Artificial Intelligence Research
Society Conference (FLAIRS), AAAI Press (2004) 349–354

http://www.daml.org/2004/11/fol/proposal
http://www.daml.org/2004/11/fol/proposal

	Verification and Refactoring of Ontologies With Rules
	Joachim Baumeister cl@@auth, Dietmar Seipel

